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Summary, A new algorithm for nonorthogonal ab initio valence bond calculation 
has been deduced based on the left-coset decomposition of the symmetric group SN. 
The strategy in the new approach is that, instead of performing the summation over 
N! permutations of group SN, we sum the left cosets, and each coset corresponds 
to a "positive determinant" of order N/2 for the evaluation of overlap, or a few 
positive determinants for Hamiltonian. Therefore, the computation turns into 
accumulating positive determinants. The expressions for evaluating both overlap 
and Hamiltonian matrix elements of VB functions are given in detail. Our practice 
shows that such a positive determinant method is quite attractive and it provides 
an excellent starting point for developing an even much more efficient algorithm of 
nonorthogonal VB calculation. 
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1 Introduction 

Electron correlation plays a central role in many chemical phenomena. To deal 
with this problem, various theoretical methods have been used. Among them, the 
MO-theory based CI method is the mostly used one. The other is the valence-bond 
(VB) method [1]. One striking advantage of VB theory is that'it is closely related to 
the well established chemical concepts such as valence [2], hybridization and 
resonance [3]. The VB function constructed from nonorthogonal orbitals incor- 
porates considerable correlation in a very physical and highly visual way [4, 5], 
thus can reveal new insights into some fundamental phenomena. However, the 
practical calculation based on nonorthogonal orbitals is still a great challenge due 
to the nonorthogonal difficulty (or sometimes referred to as N! problem). Prob- 
ably, the most practical approach is to expand the VB wave function as a linear 
combination of 2 -~N- s Slater-determinants and consequently evaluate the contribu- 
tions of each pair of Slater determinants by using L6wdin's rules 1-6] for deter- 
minants of nonorthogonal orbitals. This method was used long ago by Matsen [7], 
Raimondi [8], Barlint-Kurti and Karplus [9], and recently by Cooper et al. [-4] 
and Sironi et al. [5], and van Lenthe's group [10-12]. The difficulty of this method 
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resides on the exponentially increasing length of expansion and the need for 
repeated evaluation of determinant cofactors. To avoid the nonorthogonal diffi- 
culty while keep some advantages of nonorthogonal VB theory, the so-called GVB 
method was proposed [t3], and it was successfully applied to a wide range of 
systems. Recently, some technical approaches to this problem have been exten- 
sively investigated [10, 11, 14]. Another mathematically beautiful method is the 
group theoretical approach [15-23]. In this formalism, the spin-free form of the VB 
function is used [22]. Such a form of VB wave function can be obtained by 
~vB = ~l~oo,A~c~ where ~11A~1 is a standard projection operator associated with the first 
Young-Yamanouchi basis ofirrep [2] = [2 ~N-s, 12s], and O is a simple product of 
single particle orbitals, i.e. O = Iqi~b~(i). This form of VB wave function leads to the 
expressions involving N! (permutations) terms for both overlap and Hamiltonian. 
Such a formalism is used by McWeeny in the "permutation-driven" procedure 
[22]. As the computationl effort increases in an alarming rate with increasing N, 
this approach seems to be workable only for quite small systems. Although the 
mathematics of VB wave function has been extensively investigated [15-25], the 
development on the technical aspects of the group theoretical approach have not 
been so well developed as for the Slater-determinant method I-4, 5, 10-12, 14]. 

In modern chemistry, it is more acceptable to seek some "primitive patterns of 
understanding", therefore much attention has been turned back to the VB theory 
[1], and there is a considerable resurgence on ab initio VB calculations [4, 5, 10-12, 
14, 221. Thus there is a strong need for a powerful method for nonorthogonal VB 
calculations. To find even a partial solution to the N! problem, the fundamental 
research together with highly efficient algorithm and computer techniques are 
required. As the VB wave function is closely related to the symmetric group SN, it 
seems more reasonable to seek a powerful algorithm in the group theoretical 
approach. In this paper we present a new algorithm in spin-free formalism. In this 
algorithm, the positive determinants are introduced for evaluating overlap and 
Hamiltonian matrix elements of VB functions. The practice shows that this method 
is quite promising, and it provides a starting point for a more sophisticated 
treatment. 

2 Spin-free form of the VB wave function and the nonorthogonal difficulty 

The general form of valence bond wave function, called HLSP function [26, 27], is 
the extension of Heitler-London function [28]. It can be obtained by antisymrnet- 
rizing a product of a spin eigenfunction and a spatial function as 7~vB = AO0, 
where Ais the antisymmetrizer A = F~e6(P)P, (6(P) = _+ 1 according to the parity 
of the permutation P), f2 = F[i~bi(i), and O is an eigenfunction of spin, S: 

N/2 - S  N 

O = l-I 2- a/2[~(2i - 1)/~(2i) -/~(2i - 1)c~(2i)] 1~ c~(j). (1) 
i = l  j = N  2 S - 1  

Such a VB wave function describes the chemical bonding of the following orbital 
pairs: ~bl-qS2, q53-q54, . . . ,  qS~N-s 1-~b~u-s. Obviously, it is a linear combination of 
2 -~u-s Slater determinants. 

Over the past several decades, the mathematical form of VB theory has been 
extensively studied and many excellent relations were revealed. For example, if the 
Hamiltonian is free of spin operators, then the many electron wave function can be 
expressed in spin-free form [15, 22-25]. The symmetry-adapted spin-free VB 
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function can be obtained by projecting a simple orbital product with a standard 
projection operator vi1 ~[~'] [22-25], i.e. 

tpv  B o[)'] c) = ~ i i ~ ,  (2) 

where 

and 

2 e~ 1 = D~1(P) P 
\~" " /  PeS~ 

(3) 

f2 = ~bi (1)q52(2) ... qSN(N), (4) 

fx is the dimension of the irrep [23 = [2 ~N s, 12s], and D[~1(P) are the irreduc- 
ible-representation-matrix-elements associated with the first Young-Yamanouchi  
basis. D~J(P) can be evaluated either by Rumer-Pauling algorithm [29] or by 
a simpler algorithm proposed by Zhang [30]. For  the case S = 0, the procedure is 
even simpler: first we draw lines between every two elements in the following way: 
1-2, 3-4, . . . ,  ( 2 k -  1)-2k, . . . ,  ( N -  1)-N. Suppose a permutation P takes the 
following form: 

( 1  2 3 4 - . . N - 1 N )  
P = , (5) 

PI P2 P3 t:)4 "'" PN 1 PN 

then we draw lines between every two elements in another way as below: P1-P2, 
Ps-P4, ..., P2k- 1-P2k . . . .  , PN- 1-PN, thus we get a graph of N elements linked by 
N lines. These lines form some topological loops. Suppose the number of loops is L, 
then we have 

Such a form of VB function leads to the following expression for the evaluation of 
the overlap and Hamiltonian matrix elements of VB functions: 

(~VBlOVB) = ~ D~1(P)(OrPf2), (7a) 
P~SN 

<0vBfHIOvB> = ~ D[~(P)<OIHIPO>. (7b) 
P~SN 

These are the basic expressions for the group theoretical approach. Although 
extensive investigations on VB wave functions have been made, less progress has 
been achieved on the technical aspects of computation in the group theoretical 
approach. In both expressions, the summation runs over N! permutations. If the 
orbitals are orthogonal, then most of the terms are zero, however if the orbitals are 
nonorthogonal,  most of the terms are not zero (in the case of S = 0, ½ no term is 
null), and one has to evaluate all these terms explicitly. In the above expressions, 
each term is a product of two factors, one is the group theoretical factor D[~l(P) and 
the other is the physical factor. Thus to evaluate each term one needs to evaluate 
both factors. Although there are some simple rules to evaluate D[~J(P) quite easily, 
it does not seem to help much for solving the N! problem. It is not practicable to 
apply the above expression for nonorthogonal VB calculations when the number of 
electrons is large. 
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3 The new idea for nonorthogonal VB calculations 

To explain the idea in a simple way, we restrict our consideration to the case of spin 
S = 0 in the following discussion. The new idea of nonorthogonal VB calculation 
using group theoretical method comes from the following consideration. As men- 
tioned above, each term in Eqs. (7a) and (7b) is a product of a group theoretical 
factor D ~] (P) and a physical factor (OIPO) (or (f2IHIP~2)). The group theoretical 
factor is independent of the system, and it has some simple values as expressed by 
Eq. (6). As a result, it seems much better to classify the permutations of SN in some 
way according to their D a 1-values, thus we need not evaluate them explicitly. This 
idea was used long ago by Klein to deal with projection operations of the 
symmetric group [18, 19]. Moreover, the physical factor is also a product of several 
factors, for example: 

( ~ I P Q )  = sapiszp~ . . .  Sip, . . .  SNv~, (8) 

where P is a permutation as shown by Eq. (5), and 

Sip1 : ( ¢ a [ ( / ) l p , ) ,  . . . ,  Sipi = (~ ) i ]Oip , ) ,  . . . ,  SNpN = ( O N I ~ p N ) "  

In the following discussion, the permutations are defined to act on the indexes 
of orbitals. For example, if the permutation P is shown in Eq. (5), then we 
have 

P(/h(1)gbz(2 ) ... ~bN(N ) = gbp~(1)qSp:(2)... ~bpN(N ). (9) 

As the permutation P changes smoothly, i.e. from one permutation to another, 
only a small number of elements {Pi} in Eq. (5) change their positions, then only 
the same number of these factors {Sip} change. Therefore the basic idea of reducing 
computational effort is to find a systematic way to make use of this fact. How- 
ever without a powerful mathematic formalism we do not know how to do it 
exactly. The key to this problem is the left-coset decomposition of the symmetric 
group SN. This idea is stimulated by the early work of Gallup [17], Klein 
and Junker [18, 19] and also by the recent work of Wu and Zhang [261. We found 
that the left-coset decomposition of SN provides a proper way to classify the N! 
permutations of SN for the above purpose, and the summation going over each 
left-coset corresponds to a positive determinant. Moreover, this positive deter- 
minant method seems to be an excellent starting point for a more powerful 
group theoretical approach. In this paper, the details of this new method are 
given. 

Definition of subgroup Q. The definition of subgroup Q comes from the properties 
of the first Young-Yamanouchi basis [ [)~1 ) (and VB wave function have the same 
properties) upon permutations: 

Q~I [41 ) = I [,t1) (Qj e Q) (10) 

and Q can be expressed as a product of two subgroups G1 and G2: Q = Ga x Gz. 
Let us give the explicit expression of Ga and G2. Suppose we assign indexes 
1, 2, . . . ,  N in the two-column boxes of the Young diagram [21 = [2 +N, 1 °] from 
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left to right and from top to bot tom as follow: 

109 

1 2 

3 4 

2i - 1 2i 

N - 1  N 

(a) 

Let Ti be the symmetric group of the indices in the ith row, i.e. T~ = [e, (2i - 1 2i)], 
then G1 is the direct product of all Ti, i.e. Ga = [e,(1 2)] ® [e,(3 4)] ® ... 
® [e, (2i - 1 2i)] ® ... ® [e, (N - 1 N)], and subgroup G2 = {P1P2}, where 
/'1 are permutat ions of indices in the first column, i.e. the odd numbers, while P2 are 
the corresponding permutat ions of even number  indices 2i (i = 1, 2, . . . ,  N/2). 

It is easier to understand the subgroup Q in the following way: suppose we 
represent a permutat ion P of Eq. (5) in a two-column-box form as following: 

Pa P2 

P3 P4 

P21-1 P2i 

PN- 1 Pu 

(b) 

thus the elementary permutat ion can be show as (a). Now we have N/2 pairs 1-2, 
3-4  . . . . .  (2i - 1)-2i, (N - 1)-N, and each pair occupies a row, and each element of 

½N 1 the pair occupies one of the two boxes in the row. Obviously, there are 2 (~N)! 
ways to occupy the two-column boxes, and each way corresponds to a permutat ion 
of subgroup Q. Thus subgroup Q has ~-N 1 . 2 (~N)V permutations. It is easy to know 
that subgroup G1 represents the intra-row exchange (there are 2 +N ways), while 
G2 represents the order of the N/2 pairs (there are (½N)! arrangements of N/2 
pairs. For  example, the symmetric group $4 has a subgroup Q of 8 permutations, 
which can be shown in the two-column-box form as following: 

1 2 1 2 2 1 2 1 

3 4 ' 4 3 ' 3 4 ' 4 3 ' 

3 4 3 4 4 3 4 3 

1 2 ' 2 1 ' 1 2 ' 2 1 
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The teft-coset-decomposition of  the symmetric 9roup SN. The N! permutations of 
SN group can be classified according to the following left-coset decomposition of SN: 

S~ = ~j q, Q. (11) 
i 

This means, the N ! permutations are divided into a number of left cosets, and each 
left coset qiQ has the same number of permutations as the subgroup Q. q~ is the 
left-coset generator (representative) of the left coset q~Q. Actually, any permutation 
of the coset can be chosen as the representative of the coset. For  example, $4 can be 
partitioned into three left cosets in the following way: 

1 2  1 2  2 1  2 1  

qlQ = 3 4 ' 4 3 ' 3 4 ' 4 3 ' 

3 4  3 4  4 3  4 3  

1 2 ' 2 1 ' 1 2 ' 2 1 ' 

1 3 1 3 3 1 3 t 

q2Q = 2 4 ' 4 2 ' 2 4 ' 4 2 ' 

2 4 2 4 4 2 4 3 

1 3 ' 3 1 ' 1 3 ' 2 t ' 

1 4  1 4  4 1  4 1  

q3Q = 3 2 ' 2 3  ' 3 2 ' 2 3  ' 

3 2 3 2 2 3 2 3 

1 4 '  4 1 ' 1 4 ' 4 1 ' 

The meaning of the left coset qiQ can be easily understood. Suppose the coset 
generator ql in the two column-box form is as following: 

a l  t a2 

bl b2 
. 

dl d2 

Thus we have N / 2  pairs a l -a2 ,  b l -b2,  . . . ,  d l -d z ,  and let each pair occupy one 
row of the above two-column boxes, and each element of the pair occupies one 
of the box in the row. All the possible ways to occupy the two-column boxes by 
these N / 2  pairs a l -a2 ,  b~-b2 . . . .  , d l - d z  correspond to the permutations of the 
coset q~Q. 

A crucial important property of the coset decomposition is that all permuta- 
tions belonging to the same left coset have the same D11-value. Therefore we need 
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not evaluate the D11-value for each permutation, and we get a new expression of 
Eqs. (7a) and (Tb): 

(0VB ]@VB) ~ - - -  ~D~l(qg) ~ (f2lq~Qf2>, (12) 
q¢ QjeQ 

@VB ]HI ~'VB) = ~D[7(qz) ~, (f2 IHI q~Qj(2). (13) 
ql QjsQ 

As will be shown in the next section, the second summation corresponds to 
a positive determinant. 

Graphic characteristic of left cosets. As shown above, the left coset qiQ can be 
regarded as all possible ways to occupy the two column-boxes for a certain pairing 
patterns of N elements 1, 2 . . . . .  N. Therefore for each left coset generator ql, where 

1 2 3 4 ... N - 1  N )  
ql = (14) 

al a2 bl b2 ... dl d2 

can be characterized by a graph of pairing pattern of N elements: 

al-a 2 

bl-b2 

dl-d 2 

Therefore, the number of pairing patterns of N (even number) elements can be 
given as 

MN = ( N -  1)(N--  3)..• 3 x 1 (15) 

For  example, there are 3 coset generators of $4 which correspond to the following 
3 pairing patterns of 4 elements: 

1 2 1 2 1 2 

I I 3X4 3 4 3 4 

ql qe q3 

The D11-values of the cosets are as following: D~l(ql) = 1, 
O~J(q2) = D~l(q3) = _ ½. 

4 Overlap matrix elements of VB wave functions 

In Eqs. (12) and (13), the N! permutations are divided into a number of left cosets. 
Let us consider the summation going over a left coset in Eq. (12): 

(f2lqiQf2) (16) 
QjE~2 
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and the generator  q~ shown in two-column-box form is as following: 

al a2 1 

bl b2 2 

q, = (17) 
C 1 C 2 k 

dl dz ½N 

F rom the above discussion we know that  for a left coset qiQ ( = qiG, x G2) , the 
subgroup G~ represents the permutat ions  of elements within the pairs a,-a2,  
b~-b2 . . . . .  dl-d2, and G2 represents the order  of these pairs. Thus to run the 
summat ion  over the left coset we can fix the permuta t ion  of G2 and run the 
summat ion  over G1, that  means we keep all the pairs in certain order,  say 
a, b . . . .  , d (here we use a to denote  a pair  a , - a 2 ,  and b denote  the pair  bl-b2, ... ), 
and accumulate  the contr ibut ion by exchanging the positions of elements of each 
pair  within the row: 

E Z ( falq,g,g2f2) .  (lS) 
g~aG~ g2~G2 

Obviously,  

q~f2 = qS,~,(1)~b,,~(2)~bb,(3)qSb.(4 ) ... qS~,(2k - 1)~b~=(2k)... ~bd,(N - 1)~be~(N) (t9) 

and 

qdl  2)t2 = ~b~(1)O~,(2)Obl(3)~bb~(4)... q~¢,(2k -- 1)~b¢~(2k)... ddd~(N -- 1)~bd~(X), 

thus 

g~ s[e,(1 2)] 

where 

S1 a, 

(20) 

<Olq,gllg2> = (<~bilG~><q521G~> + <q~llG~><<b21G,>). 

( ~ 3 1 4 ~ b l ) ( q ~ 4 l q ~ G )  . . .  (q~v-,l~bdl)(qS~vlC/Sd~) 

= ( S l a l S 2 a 2  -Jr- S l a a S 2 a l ) S 3 b t S 4 b 2  . . .  S 2 k - l c ¢ ~ . 2 k c z  . . .  S N - S L d l S N d 2  , 

(21) 

= (qS,lq~.,), $2.~ = (~b2t4~a2), - . . ,  S2k-,~, = (~b2k--ll~bc,) . . . . .  (22) 

F r o m  the same reasoning, the summat ion  over  [e, (1 2)] ® [e, (3 4)] leads to the 
following expression: 

Y', ( ~ l q i g ,  lO> = (&a,&~= + &.fiia)(&bfi4b= + S3b2S4b,) 
g,s[e.(1 2)1 ® [e,(3 4)1 

• .- S2k- *~,&kc= --- S~- *<SNe2 • (23) 
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This procedure can go for totally N / 2  times and finally we have 

(O]q~gll f2)  = (SlglS2a 2 + Sla2S2a,)(S3b S4b2 -[- S3b2S4bl)  
gLeOl 

let 
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• .. (S2k-  lc,$2kc2 -}- S2k_ lc2S2kcl) ...  (SN J.dlSNd2 + S N - ld2SNdl ) , 

(24) 

A1 = (SlaiS2a2 ~- S1a2S2al), 

C k = (S2k_ lc182kc2 Av S2k lc182kcl), .. .  

B2 = (S3b,S4b2 + S3b~S4b~), --- 

DN/2 = (SN- I,t~SNa~ + Sn ld2SNdl), 

(25) 

then we get a more compact form of above expression, i.e. 

2 (~'2[qig1](2) = A I B 2  "'" Ck "'" Dry~2. 
gl~G1 

(26) 

This means that the summation going over 2 ~N permutations of subgroup G1 turns 
to be just one term which is a product of N / 2  factors, and each factor can be 
obtained by Eq. (25) very easily. Now let us consider the case that g2 is different 
from the elementary permutation. 

Suppose 

al al 

bl bl 

qig2 = (27) ! ! 
C l  C2 

dl d~ 

From the definition of G 2 it can be known that the N / 2  pairs a'~-a'2, 
b'l-b'2, . . . ,  d'l d'2 is a new order of the pairs al -a2 ,  ba-b2 . . . .  , d l -d2 .  If we fix 
92 and the subset qiGlg2 is resulted by exchanging the elements within the rows of 
above diagram, while keep the order of these pairs unchanged. From the same 
reasoning as above we know that the summation running over the subset q~Glg2 let 
similar expression: 

where 

Y, ( f2 lq ,g lg2l f2)  = A'~B'2 ... C~ . . .  D k / 2  . (28) 
g~EG~ 

Atl = (Sla,lS2a, 2 -[- Sla,2S2a] ) , B 2  = (S3b,lS4b,2 q- S3b,2S4b,l ), . . .  

G = ( & k - ~ & ~  + &~-I<S2<) ,  ... D~,/2 = ( & - , ~ & ~  + & -  l~SU,'l), 

(29) 
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Therefore the summation over the (½N)! permutations of G2 leads to the following 
"positive determinant" det(q~) of order N/2,  

det(qi) = 

A1 A2 A3 . . . . . .  AN~2 

B 1  B 2  B3 . . . . . .  B N / 2  

C1 C2 C3 . . . . . .  CN/2 

D1 D 2  D 3 . . . . . .  D N / 2  

(30) 

i.e. det(qi)= ~ j ( f l lq iQj [~) .  A positive determinantis  different from the usual 
de terminant jus tby omitt ingthe parity Nctor(  ± 1) ofeachterm.  Forexample 

A1 A2 A3 

B1 B2 B3 = AIBeC3 + A1C2B3 + C1A2B3 + BiA2C3 + B1CeA3 + C1B2A3 

C1 C2 C3 

(31) 

(normal determinant 
= AIB2C3 - A1C2B3 + C1A2B3 - BIA2C3 + B1C2A3 - CIB2A3). 

As shown above, every 2 ¢N terms in the permutation-driven procedure turns to 
be just one term of a positive determinant. Finally, we get a new expression of 
overlap of VB wave function as following: 

= • Dll  (q~) det(q/), (32) 
ql 

where the summation goes over all left coset generators. Thus in the new proce- 
dure, only the coset generators (or the pairing patterns of N elements) and their 
Dim-values are involved, and we need not go through N! permutations of SN. 

5 Hamiltonian matrix elements 

Similar procedure can be applied to the evaluation of Hamiltonian of VB wave 
function. As both one- and two-electron operators are involved in Hamiltonian 
operator, the expression of Hamiltonian is much more complicated. Generally, the 
Hamiltonian operator can be expressed as the sum of one- and two- operators: 

N N 

H = F + G = ~ f ( i )  + ~ g(i,j). (33) 
i = l  i < j  

Let us consider the contributions from one-electron operators first. In spin-free 
formalism, we have 

N 

(~vRIF[~bVB> = ~ D~1(P) ~ (f2[f(m)lPf2> (34) 
P~S N m = 1 
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and the left-coset decomposition of Su leads to the new expression: 
N 

<///vBIF]IpVB) = 2 D~Zll(q i) 2 2 ( f 2 l f ( m ) l q ~ Q ~ 2 ) "  (35) 
i m = i Q j a Q  

Let us consider the summation over a coset qiQ and the operators f(1)  and f(2), 
where q~ is shown in Eq. (17). From the same reasoning as shown above, we have 

~, (QIf(1) + f(2)lqiolf2) = F:B2 ... Ds/2, (36) 
g~G1 

where 

and 

F A = FlalS2a2 q- FlazS2al + Sla~F2a2 -.[- SlagF2al, (37) 

FI< = <,;bllfl,;bal>, F2,2 = <,;b2JflqS,,~), ... (38) 

B 2  . . . .  , D½N are defined in the same way as above. Therefore the summation going 
over the left coset q~Q leads to the following positive determinant: 

(QIf(1) +f(2)tq~Qjf2) = det(F1, q~), (39) 
QfiQ 

where 

F A A2 A3 . . . . . .  A N ~ 2  

F f  B 2 B 3 . . . . . .  BN/2 

det(F1, qi) = 
FC1 C 2 C3 . . . . . .  CN/2 

F~ D2 D3 . . . . . .  Din2 

From the same reasoning, we have 

(Qlf(Zk - 1) +f(Zk)lq;Qfl2) = det(Fk, q;), 
Q:EQ 

where 

det(Fk, qi) = 

A1 A2 ... F A ... AN~2 

B1 B2 .. .  F B ... BN/2 

C1 C2 .. .  F C ,.. CN/2 

D1 De ... F~ ... DN/2 

(40) 

(41) 

(42) 

Finally we get the expression for the contribution of one-electron operators to 
Hamiltonian as following: 

N/2 
<¢'vBIFfOvB> Y~ ~ = ZD11 (q;) det(Fk, q,). (43) 

k=l  i 

Now let us consider the expression for two-electron operators: 
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The two-electron operators 9(k , l )  can be divided into two groups. Group I, 
g ( 2 k - l ,  2k) ( k = 1 , 2  . . . . .  N/2);  group II: g(k,  1), where k e ( 2 m - l ,  2m), 
1 e ( 2 n - 1 , 2 n )  and m v a n. Let us consider the contribution from 9(1,2), 
g(3, 4), . . . ,  g ( N  - 1, N )  first. One can find that  

~. ( f 2 l g ( 2 k  - 1, 2k )q~g l l f2 )  = A1B2 . . .  G c ... DN/2, (44) 

where 

G c = (q52k_1(1)q52k(2)19(1 , 2)l~bcl(1)~bc2(2)) 

+ (q52k-l(1)q~2k(2)lg(1, 2)1 qSc2(1)qSc,(2)) 

and similarly, we can get 

( f21g(2k  - 1, 2k)q~g~g21f2) = A'~B'2 ... G c' . . .  D'N/2, 
g~EG1 

where 

(45) 

(46) 

! ! 
a l  a2 

bl bl 

qi92 = (47) t ! 
C l  C2  

dl dl 

and 

G c' = (~b2k ~(1)4~2k(2)10(1, 2) l G, (1) qSq (2) ) 

+ (q52k- l(1)•2k(2)lg(1, 2)[q~c,2(1)qSc,l(2)). (48) 

Thus the summation going over bo th  G1 and G2 (i.e. the left coset q~Q leads to the 
following positive determinant: 

( f219(2k  - 1, 2k)lq~Qjlf2 ) = det(Gk, q~), (49) 
Qj~ O 

where 

det(Gk, qi) = 

A 1 A 2 . . .  G~ . . .  A N / 2  

B1 B2 ... G~ ... Bx/2 

C 1 C 2 . . .  G f  . . .  CN/2 

D1 D2 ... G~ ... DN/2 

(50) 

We can see that  Eqs. (42) and (50) have the same form, thus it is better to combine 
them into one, i.e. 

(f21/(2k - 1) + / (2k)  + g(2k  - 1, 2 k ) l q iQ j l f 2 )  = det(Hk, qi), (51) 
Oj~(2 
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where 

and 
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det(Hk, qi) = 

A1 A2 ... HA . . .  AN~ 2 

B1 B2 ... H f  . . .  BN/2 

C1 C2 ... H c ... CN/2 

D1 D 2  . . .  H~ . . .  DN/2 

(52) 

H A = F  A + G ~ , H f = F ~ + G f ,  . . . , H ~ = F ~ + G ~ ,  

Finally, let us consider the operators g(k, l), k e (2m - 1, 2m), j e (2n - 1, 2n) 
and m # n. Thus for each pair (m, n), there are 4 operators g ( 2 m -  1, 2 n -  1), 
g ( 2 m -  1, 2n), g(2m, 2 n -  1) and g(2m, 2n). Although we cannot get an exact 
positive determinant for the contribution of these two-electron operators, the 
expression takes the same form as Laplace expansion of a positive determinant. 

Suppose 

det (qi) = 

A 1  A 2  A3 . . . . . .  AN~2 

B 1  B 2  B 3  . . . . . .  BN/2  

C 1  C 2  C 3 . . . . . .  CN/2  

D1 D2 D3 . . . . . .  DN/2 

(53) 

= Z Mk~.Lk~., (54) 
k<l  

where M~, are positive subdeterminants of k,/th rows and m, nth columns, and 
kZ L,,, are the corresponding cofactors, i.e. the positive subdeterminants of above 

matrix without the k, lth rows and m, nth columns. Then we have 

where 

2m 2n 

~, ~, ~ (Qlg(r, s)lqiQj(2) = ~, Gk~.Lk~m. = det(Gm., q~), 
r=2m - 1 s=2n - 1 Qf iQ k<l  

(55) 

2m 2n 2k 2l 

G~. = Y~ Y~ F, Y~ [g,jr.S,'r'Sj's' + g,~s.S~'~'Sj'r'l, (56) 
i=2m l j = 2 n  l r = 2 k - J . s = 2 1 - 1  

gljr~ = (~b~(1) q~(2) lg(1, 2) 1 ~bpr(1) q~es(2) ) ,  (57) 

i + i ' = 4 m - 1 ,  j + j ' = 4 n - 1 ,  r + r ' = 4 k - 1 ,  s + s ' = 4 1 - 1 ,  (58) 
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and 

si, = (q~,l@~,> (59) 

( 1  2 3 4 . . . N )  (60) 
qi= P1 P2 P3 P4 ... PN " 

Obviously, G~, is a sum of 32 terms, and these 32 terms always appear as a compact 
unit repeatedly. This reduces computational effort greatly. 

Finally, we get the completed expression of Hamilt0nian of VB wave function: 

[- N/2 N/2 )1 
< + v . 1 O v . >  : ":--~1 det(/-/j, q i )+  ~ det(Gmn, qi , 

j m<n 
(61) 

In practice, it seems more convenient to use a slightly different expression: 

[- N/2 N/2 )q ] 

<+v~lOv~> t,,l L ~, ' = ~ D l l ( q i )  det(Hj, qi)+ ~, det(Gm,,qi , 
i j= m<n 

(62) 

where det(//~, qi) and det(Gm,, q~) are defined as following: 

det(H~, qi) = 

A1 A2 A 3  . . . . . .  AN/z 

B1 B2 B3 . . . . . .  BN/2 

Uf U~ H7 . . . . . .  HN/2 

D1 D2 D3 . . . . . .  ON~2 

(63) 

det(G~,, qi) = ~ Gk~"L"~r. (64) 
k<l 

The matrix elements and the positive subdeterminants are defined in the same way 
as in Eq. (51) and Eq. (55), respectively. It can be easily shown that 

and 

N/2 N/2 
~, det(//j, q,) = ~ det(Hj., ql) (65) 

j=l j=a 

N/2 N/2 
det(Gm,, qi) = E det(G' , ,  qi). (66) 

m<n m<n 

6 Implementation of the new method and the efficiency 

Evaluation of positive determinants by Laplace expansion. An n x n positive deter- 
minant consists of n! terms, and each term is a product of n factors. If the n! terms 
are treated separately, then it requires ( n -  1)n! operations of multiplication. 
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However ,  the c o m p u t a t i o n a l  effort can be reduced  signif icantly by  using Lap lace  
expans ion  method .  Let  us cons ider  an n x n posi t ive  de t e rminan t  as shown below. 

A 1 A 2 A 3 . . . . . .  A ,  

B1 B2 B3 . . . . . .  B n 

C1 C2 C3 . . . . . .  C n 

D1 D2 D3 . . . . . .  D ,  

(67) 

The  first s tep is to evalua te  the 2 x 2 sub-posi t ive  de te rminan t s  co r r e spond ing  to 
the last  two rows {Ci}, {D~}. There  are n(n - 1)/2 terms,  and  each term requires  two 
mul t ip l ica t ions :  

(CD),j = C~Dj + CjD~. (68) 

The  next  s tep is to evalua te  the sub-pos i t ive  de te rminan t s  of h igher  o rder  by  using 
the sub-pos i t ive  de te rminan t s  of  lower  order ,  i.e. the 3 x 3 posi t ive de te rminan t s  of 
the last  three rows can be eva lua ted  by  

(BCD),jk = B,(CD)jk + Bj(CD)~k + Bk(CD)i j .  (69) 

Obvious ly ,  there  are n(n - 1)(n - 2)/3! sub-pos i t ive  de te rminan t s  of o rde r  3, and  
each one requires  3 mul t ip l ica t ions .  This  p rocedure  can be con t inued  for to ta l ly  
n - 1 times. The  n u m b e r  of  mul t ip l i ca t ion  ope ra t ions  for each step are shown as 
following: 

Step 1 : 2  x n(n -- 1)/2 

Step 2 : 3  x n(n - 1)(n - 2)/3! 

Step k: (k + 1)n(n - 1) ... (n - k) /(k  + 1)! 

The  to ta l  n u m b e r  of mul t ip l i ca t ion  ope ra t ions  for the eva lua t ion  of one n x n 
posi t ive  de t e rminan t  is given in Table  1. 

Table 1. The number (M) of multiplication operations 
for the evaluation of one n x n positive determinant by 
Laplace expansion method 

n M (n - 1)n! 

2 2 2 
3 9 9 
4 28 72 
5 75 480 
6 186 3600 
7 441 30 240 
8 1016 282240 
9 2295 2903040 

10 5110 32 659 200 
11 11253 399 168000 
12 24 564 9 740 503 040 
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From Table 1 one can see that the computat ional  effort increases approxim- 
ately with 2 n, which is much slower than (n - 1)n!. For  N = 20, the corresponding 
positive determinants are of order 10, and each one requires only 5110 operations. 

Efficiency of the new method. The above theoretical formalism has been imple- 
mented into an ab initio valence bond program AMOY-VB at Xiamen (Amoy) 
University. As the summation is pertbrmed over the left cosets, rather than the N! 
permutations, the computat ion is largely reduced. This has been confirmed in our 
practice. Using the lull valence bond calculation of ~-electron system of benzene as 
an example, the evaluation of all the VB elements of a 175 x 175 matrix requires 
55 min on M - 3 4 0 / F A C O M  by permutation-driven method, while the new method 
requires only 41 s, which is 80 times faster. Moreover, the graphic pattern of the left 
cosets will change gradually from one left coset to another, thus the corresponding 
matrix of the positive determinant will change gradually too. This fact can be used 
to get further reduction of the computat ion for larger systems. The techniques 
based on this fact and the concerning theoretical problems are discussed in detail 
elsewhere [31]. The calculation of one VB structure of a 16-electron system requi 
res about  1 min on a workstation using the updated version of our VB program, 
while it is very difficult to perform the same calculation using the permuta-  
tion-driven method. 

7 Summary of the new method 

In this paper, we have proposed a new algorithm for nonorthogonal  valence bond 
calculation based on the left coset decomposition of SN. The new expressions for 
evaluating the overlap and Hamiltonian matrix elements of spin-free VB wave 
functions are given in detail. The efficiency of the new algorithm comes from two 
aspects. First, it is not necessary to obtain either permutations or their D11-values 
individually. Second, instead of accumulating the contribution of each permutat ion 
separately, the new procedure treats the contribution of all 2+N(½N)! permutations 
of each left coset as a basic unit, and this basic unit turns out to be a positive 
determinant of order N/2 for overlap- or a few positive determinants for Hamil-  
tonian matrix elements. 

In principle, the same strategy can be applied to the case of spin S > 0. Actually, 
we can introduce a subgroup Q which has ÷~¢-s 1 2 (7N - S)!(2S)! permutations. For  
the evaluation of overlap matrix elements, we have a product of two determinants 
for each left coset, one is a positive determinant of order ½N - S, and the other is 
a usual determinant of order 2S. Moreover, in the case of S _> 1, the D~Lvalues of 
some cosets are zero, thus these cosets have no contribution to the matrix elements 
of VB wave function. The case of S = ½, 1 can be treated in a much similar way as 
the case of S = 0, and little change in the program is required. 
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